A A PPLICABLE STANDARD OPERATING	COUNT	DESCRIPTION	OF REVISION	ONS	BY	CHKD	DATE		coul	NT	DESCRIPTION	OF REVISIONS	S BY	CHKD	DA.	TE
APPLICABLE STANDARD							Δ		十							
POPERATING TREMERATURE RANGE −55°C TO +125°C(95%RH MAX) TEMPERATURE −55°C TO +125°C(95%RH MAX) TEMPERATURE −55°C TO +125°C(95%RH MAX) TEMPERATURE −55°C TO +125°C	2							Δ								
TEMPERATURE RANGE	APPLICA	BLE STAN	DARD									·				
RATING POWER W MPEDANCE SQ (0.045 TO 60GH PECULIARITY CABBLE CONSTRUCTION REQUIREMENTS QT CONSTRUCTION CONSTRUCTION CONFIRMED VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. O MARKING CONFIRMED VISUALLY A MAX CONFIRMED VISUALLY O MISULATION RESISTANCE 250 ∨ DC. WOLTAGE PROOF 300 ∨ AC FOR 1 min.CURRENT LEAKAGE 2mA MAX. NO FLASHOVER OR BREAKDOWN O VOLTAGE STANDING VOLTAGE STANDING VOLTAGE STANDING VOLTAGE STANDING MAYOR RATIO D MECHANICAL CHARACTERISTICS MECHANICAL CHARACTERISTICS MECHANICAL OPERATION MEASURED BY APPLICABLE CONNECTOR INSERTION FORCE N MAX. D MAX D MECHANICAL OPERATION MEASURED BY APPLICABLE CONNECTOR INSERTION FORCE N MIN. D MECHANICAL OPERATION O M	<u></u>	L =55°C TO +125°C/050/DH MAY\								ro +1:	25°C(9	5%RH N	VIAX)			
PECULIARITY SPECIFICATIONS ITEM TEST METHOD REQUIREMENTS OT CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 1000 ma MAX (DC OR 1000 Hz). (STANDARD FOR MATING PORTION ONLY.) OUTER CONTACT 4 mig. MAX. O. INSULATION RESISTANCE 250 V DC. VOLTAGE PROOF 300 V AC FOR 1 min. CURRENT LEAKAGE 2ma MAX. NO FLASHOVER OR BREAKDOWN. O. VOLTAGE STANDING PREQUENCY 0.045 TO 60 GHz VSWR: 1.15 MAX. 0.045 - 2.25 GHz VSWR: 1.25 MAX. 50 - 60 GHz VSWR: 1.35 MAX. 50	RATING POWER		CH						PACTEDISTIC					J-7\		
SPECIFICATIONS ITEM TEST METHOD REQUIREMENTS QT CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. ONARRING CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 1000 m/s M/s/ (DC OR 1000 Hz). (STANDARD FOR MATING PORTION ONLY.) VOLTAGE STANDING (STANDARD FOR MATING PORTION ONLY.) VOLTAGE STANDING FREQUENCY 0.045 TO 60 GHz VOVITAGE STANDING WAVE RATO 1 PREQUENCY 0.045 TO 60 GHz VISIBERTION LOSS FREQUENCY GHz WAVE RATO 1 MIN. ON FLASHOVER OR BREAKDOWN. WITHDRAWAL FORCES MECHANICAL CHARACTERISTICS CONTACT INSERTION AND MEASURED BY APPLICABLE CONNECTOR. WITHDRAWAL FORCES MECHANICAL OPERATION FREQUENCY 10 TO 2000 Hz SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. CABLE CLAMP APPLYING A PULL FORCE THE CABLE AXIALLY TO MAY HEAT. ON WITHDRAWAL AND BREAKAGE OF CABLE PULL). AT N MAX. CABILE CLAMP APPLYING A PULL FORCE THE CABLE AXIALLY TO TATAL 10 CYCLES (240 h) TEMPERATURE 50 → 1 +125 → 1 C TEMPERATURE 50 → 3 → 125 → 1 C TEMPERATURE 50 → 3 → 125 → 1 C TEMPERATURE 50 → 3 → 1125 → 1			W IMP							-DANOL '					12.)	
TIEM TEST METHOD REQUIREMENTS QT CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 1000 ma MAX (DC OR 1000 Hz). (STANDARD FOR MATING PORTION ONLY.) OUTER CONTACT 4 mΩ MAX. OUTER CONTACT 7 mΩ MAX. TO 10 mAX.			.,													
TIEM TEST METHOD REQUIREMENTS QT CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 1000 ma MAX (DC OR 1000 Hz). (STANDARD FOR MATING PORTION ONLY.) 0UTER CONTACT 4 mΩ MAX. O 0UTER CONTACT 6 mΩ MAX. O 0UTER CONTACT 6 mΩ MAX. S 5 - 80 GHz VSWR: 1:35 MAX. 2 55 - 80 GHz VSWR: 1:35 MAX. 5 5 -		<u> </u>				S	PFCIF	CA	TIC	NC	IS .	· · · · · ·				e.
CONSTRUCTION GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. ACCORDING TO DRAWING. O MARKING CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 1000 ma Max (DC or 1000 Hz). (STANDARD FOR MATING PORTION ONLY.) OUTER CONTACT 4 mΩ Max. O INSULATION RESISTANCE 250 V.DC. 500 MΩ MIN. O VOLTAGE STANDING VISUALLY. VOLTAGE PROOF 300 V.AC FOR 1 min.CURRENT LEAKAGE 2mA MAx. NO FLASHOVER OR BREAKDOWN. O VOLTAGE STANDING FREQUENCY 0.045 TO 60 GHz VSWR: 1.15 MAX 0.045 - 26.5 GHz VSWR: 1.25 MAX 26.5 - 50 GHz VSWR: 1.35 MAX 26.5 - 60 GHz VSWR:		T									FOLIREMEN	ITS		ОТ	AT	
GENERAL EXAMINATION VISUALLY AND BY MEASURING INSTRUMENT. MARKING CONFIRMED VISUALLY. CONTENED VISUALLY. CONTENED VISUALLY. CONTACT RESISTANCE CONTACT RESISTANCE (STANDARD FOR MATING PORTION ONLY.) INSULATION RESISTANCE STANDARD FOR MATING PORTION ONLY.) OUTER CONTACT 4 mΩ MAX. OUTER CONTACT 6 mΩ MAX. OUTE					15,	O I IVIE	IIIOD			Ш	REGUITEMENTO					17.1
MARKING CONFIRMED VISUALLY. ELECTRIC CHARACTERISTICS CONTACT RESISTANCE (STANDARD FOR MATING PORTION ONLY.) (STANDARD FOR MATING PORTION ONLY.) INSULATION RESISTANCE (STANDARD FOR MATING PORTION ONLY.) VOLTAGE PROOF 300 V AC FOR 1 min.CURRENT LEAKAGE 2mA MAX. VOLTAGE STANDING FREQUENCY 0.045 TO 60 GHz VSWR: 1.15 MAX. 0.045 - 28.5 GHz VSWR: 1.15 MAX. 0.045 - 5.6 GHz VSWR: 1.15 MAX. 0.045 - 28.5 GHz VSWR: 1.15 MAX. 0.045 - 5.6 GHz VSWR: 1.15 MAX. 0.045 - 5.6 GHz VSWR: 1.15 MAX. 0.045 - 28.5 GHz VSWR: 1.15 MAX. 0.05 MA			VISUALLY	AND B	Y MEA	SHRING	NSTRUME	NT.		A	CCORDING TO	DRAWING.				0
ELECTRIC CHARACTERISTICS CONTACT RESISTANCE 1000 ma Max (DC OR 1000 Hz). (STANDARD FOR MATING PORTION ONLY.) CENTER CONTACT 4 mΩ MAX. O NSULATION RESISTANCE 250 V DC. DO VAC FOR 1 min. CURRENT LEAKAGE 2mA MAX. NO FLASHOVER OR BREAKDOWN. O VOLTAGE STANDING WAVE RATIO FREQUENCY 0.045 TO 60 GHz VSWR: 1.15 MAX. 0.045 - 28.5 GHz VSWR: 1.25 MAX. 28.5 - 50 GHz VSWR: 1.25 MAX. 28.5 - 60 GHz VSWR: 1.25 MAX. O INSERTION LOSS FREQUENCY GHz INSERTION FORCE N MAX. — INSERTION FORCES BY STEEL GAUGE. EXTRACTION FORCE N MAX. — INSERTION AND MEASURED BY APPLICABLE CONNECTOR. INSERTION FORCE N MIN. — INSERTION FORCES MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. ① CONTACT RESISTANCE: CENTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE OF FARTS. ② NO DAMAGE, CRACK AND LOOSENESS OF PARTS. ② NO DAMAGE							3 INO INCINE	•••		\dashv						+=
CONTACT RESISTANCE 1000 ma MAX (DC OR 1000 Hz)		IC CHARA	<u> </u>			<u> </u>				- 1						<u> </u>
STANDARD FOR MATING PORTION ONLY.) OUTER CONTACT 4 mΩ MAX. O						R 1000	Hz).			C	ENTER CONTA	CT	4 ms	2 MAX.	10	Τ_
INSULATION RESISTANCE 250 V DC. VOLTAGE PROOF 300 V AC FOR 1 min.CURRENT LEAKAGE 2 mA MAX. NO FLASHOVER OR BREAKDOWN. O VOLTAGE STANDING WAVE RATIO FREQUENCY 0.045 TO 60 GHz VSWR: 1.15 MAX. 0.045 - 26.5 GHz VSWR: 1.25 MAX. 50 - 60 GHz VSWR: 1.35 MAX. 50 - 60 GHz NSERTION LOSS FREQUENCY GHz MECHANICAL CHARACTERISTICS CONTACT INSERTION AND EXTRACTION FORCE INSERTION FORCE INMIN. — INSERTION FORCE	ONIAGIAL	SISTANCE								H						+-
VOLTAGE PROOF 300 V AC FOR 1 min.CURRENT LEAKAGE 2mA MAX. NO FLASHOVER OR BREAKDOWN. VOLTAGE STANDING WAVE RATIO 1 FREQUENCY 0.045 TO 60 GHz VSWR: 1.35 MAX. 26.5 - 50 GHz VSWR: 1.25 MAX. 26.5 - 50 GHz VSWR: 1.35 MAX. 50 - 60 GHz NSERTION LOSS FREQUENCY GHz MECHANICAL CHARACTERISTICS CONTACT INSERTION AND EXTRACTION FORCES BY STEEL GAUGE. INSERTION FORCE N MIN. — EXTRACTION FORCE N MIN. — INSERTION AND MEASURED BY APPLICABLE CONNECTOR. MECHANICAL OPERATION THE CONTACT RESISTANCE: SINGLE AMPLITUDE 0.75 mm, 196 m/s² SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. TO NO BREAKAGE OF CLAMP. ENVIRONMENTAL CHARACTERISTICS CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT −10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) TEMPERATURE 65 → → +125 → − °C TIME 30 → 3 → 30 → 3 min. NO FLASHOVER OR BREAKDOWN. VSWR: 1.15 MAX. 26.5 5. 50 GHz VSWR: 1.25 MAX. 26.5 5. 06 Hz VSWR: 1.25 MAX. 26.5 5. 06 Hz VSWR: 1.25 MAX. 26.5 5. 06 Hz VSWR: 1.25 MAX. 26.5 5. 06 GHz VSWR: 1.25 MAX. 26.5 5.00 GHZ VSWR: 1.25 MAX. 26.5 SO GHZ VSWR:	USUII ATION	PESISTANCE	<u> ` </u>			10101				╫						0
Voltage standing																ŏ
WAVE RATIO			300 7 70		1 111111.0	OME	T ELMINOL.	2110-614						GHz		1
INSERTION LOSS FREQUENCY GHz dB MAX. — MECHANICAL CHARACTERISTICS CONTACT INSERTION AND EXTRACTION FORCE N MAX. — INSERTION AND MEASURED BY APPLICABLE CONNECTOR. INSERTION FORCE N MIN. — WITHDRAWAL FORCES N MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. — MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. — WITHDRAWAL FORCE N MIN. — 1			FREQUE	NCY	0.045	TO 6	0 GHz			- 1		K. 26.5			0	0
MECHANICAL CHARACTERISTICS CONTACT INSERTION AND EXTRACTION FORCES BY STEEL GAUGE. BY STEEL GAUGE. INSERTION FORCE INSERTION FORCE INSERTION FORCE INSERTION FORCE INSERTION FORCE IN MAX. WITHDRAWAL FORCES MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. EXTRACTION FORCE INSERTION FORCE INSERTION FORCE IN MAX. EXTRACTION FORCE IN MIN. O ONTACT RESISTANCE: CENTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE ON DAMAGE, CRACK AND LOOSENESS OF PARTS. OO DAMAGE, CRACK AND LOOSENESS OF PARTS. OUTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE ON DAMAGE, CRACK AND LOOSENESS OF PARTS. OUTER CONTACT 6 mΩMAX.CHANGE										V:	SWR : 1.35 MAX		- 60	GHz		+
CONTACT INSERTION AND EXTRACTION FORCES BY STEEL GAUGE. BY STECTIONS OF PARTS. BY AT 12 CYCLES 10 N MIN. BY STECTIONS. BY ON DAMAGE, CRACK AND LOOSENESS OF PARTS. BY STECTION SON. BY STEET ON TAN. BY STECTION SON. BY STECT					-		GHz			Ш		dB MAX.				
EXTRACTION FORCE BY STEEL GAUGE. EXTRACTION FORCE N MIN. WITHDRAWAL FORCES MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. WID CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE OF PARTS. WIBRATION FREQUENCY 10 TO 2000 Hz SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS.			RACTE	RIS	HUS	<u> </u>					IOFOTION FOR			1 5 1 4 3 2	1	1
INSERTION AND MEASURED BY APPLICABLE CONNECTOR. WITHDRAWAL FORCES MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. DO CONTACT RESISTANCE: CENTER CONTACT 6 mΩMAX.CHANGE OUTER		RY STEEL GALIGE							<u> </u>					 -	+	
WITHDRAWAL FORCES MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. (CONTACT RESISTANCE: CENTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE O DAMAGE, CRACK AND LOOSENESS OF PARTS. O CABLE CLAMP AT 12 CYCLES FOR 3 DIRECTIONS. AT 2 TIMES FOR 3 DIRECTIONS. AT 3 TIMES FOR 3 DIRECTIONS. AT 1 MAX. O CABLE CLAMP AT N MAX. AT N MAX. CABLE OUTER CONTACT 6 mΩMAX.CHANGE									_					+=	+-	
MECHANICAL OPERATION 500 TIMES INSERTIONS AND EXTRACTIONS. (1) CONTACT RESISTANCE: CENTER CONTACT 6 mΩMAX.CHANGE OUTER CONTACT 6 mΩMAX.CHANGE ON DAMAGE, CRACK AND LOOSENESS OF PARTS.		IMEASURED BY APPLICABLE CONNECTOR.								···					+-	
CENTER CONTACT 6 m\(\Omeganum\) MAX.CHANGE OUTER CONTACT 6 m\(\Omeganum\) MAX.CHANGE OUTER CONTACT 6 m\(\Omeganum\) MAX.CHANGE OF PARTS. VIBRATION FREQUENCY 10 TO 2000 Hz SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) AT N MAX. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT,CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) TOTAL 10 CYCLES (240 h) CENTER CONTACT 6 m\(\Omeganum\) MAX.CHANGE OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS.			500 TIM	IES INS	SERTIC	ONS AN	D EXTRACTION	ONS.		-						╁
OUTER CONTACT 6 mΩMAX.CHANGE ② NO DAMAGE, CRACK AND LOOSENESS OF PARTS. VIBRATION FREQUENCY 10 TO 2000 Hz SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT −10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) TOTAL 10 CYCLES (240 h) RAPID CHANGE OF TIME 30 → 3 → 30 → 3 min. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. NO DAMAGE, CRACK AND LOOSENESS OF PARTS. NO DAMAGE, CRACK AND LOOSENESS OF PARTS.											==""		ηΩΜΑΧ	CHANGE	≣ lo	_
VIBRATION FREQUENCY 10 TO 2000 Hz SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT −10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) TOTAL 10 CYCLES (240 h) TEMPERATURE −65 → → +125 → − °C TIME 30 → 3 → 30 → 3 min. O NO ELECTRICAL DISCONTINUITY OF 1 μs. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS.																
VIBRATION FREQUENCY 10 TO 2000 Hz SINGLE AMPLITUDE 0.75 mm, 196 m/s AT 12 CYCLES FOR 3 DIRECTIONS. SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT,CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) TOTAL 10 CYCLES (240 h) TEMPERATURE $-65 \rightarrow - \rightarrow +125 \rightarrow - \circ C$ TIME $30 \rightarrow 3 \rightarrow 30 \rightarrow 3$ min. TO DAMAGE, CRACK AND LOOSENESS OF PARTS. O NO BLECTRICAL DISCONTINUITY OF 1 μ s. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS.										(2	-	CRACK AND L	OOSEN	ESS		
SINGLE AMPLITUDE 0.75 mm, 196 m/s² AT 12 CYCLES FOR 3 DIRECTIONS. SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) ENVIRONMENTAL CHARACTERISTICS TEMPERATURE TEMPERATURE -65 →			EREQUENC	CY 1	0 то	2000) H2			1		CAL DISCONTIN	NUITY O	 F		1
SHOCK 980 m/s² DIRECTIONS OF PULSE 6 ms AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) APPLYING A PULL FORCE THE CABLE AXIALLY AT N MAX. CABLE. (② NO BREAKAGE OF CLAMP. ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT −10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) TOTAL 10 CYCLES (240 h) CABLE. (② NO BREAKAGE OF CLAMP. (AT HIGH HUMIDITY) (② INSULATION RESISTANCE: 100 MΩ MIN. (AT HIGH HUMIDITY) (③ NO DAMAGE, CRACK AND LOOSENESS OF PARTS. RAPID CHANGE OF TIME TEMPERATURE -65 → — → +125 → — °C TIME 30 → 3 → 30 → 3 min. O NO DAMAGE, CRACK AND LOOSENESS OF PARTS. O O PARTS. O O O O O O O O O O O O O			SINGLE AMPLITUDE 0.75 mm, 196 m/s ²								-				١٥	l _
AT 3 TIMES FOR 3 DIRECTIONS. CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) (AT HIGH HUMIDITY) (BY INSULATION RESISTANCE: 500 MΩ MIN. (AT DRY) (BY INS										_[2	-	CRACK AND L	OOSEN	ESS		<u> </u>
CABLE CLAMP ROBUSTNESS (AGAINST CABLE PULL) ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) (AT HIGH HUMIDITY) (BY INSULATION RESISTANCE: 500 MΩ MIN. (AT DRY) (BY INSULATION RESISTANCE: 500 MΩ MIN											OF PARTS.					
ROBUSTNESS (AGAINST CABLE PULL) AT N MAX. CABLE. NO BREAKAGE OF CLAMP. CABLE. NO BREAKAGE OF CLAMP. CABLE. NO BREAKAGE OF CLAMP. DAMP HEAT, CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % TOTAL 10 CYCLES (240 h) (AT HIGH HUMIDITY) (INSULATION RESISTANCE: 500 MΩ MIN. (AT DRY) (INSULATION	CABLE CLAMP									1	① NO WITHDRAWAL AND BREAKAGE OF					\vdash
ENVIRONMENTAL CHARACTERISTICS DAMP HEAT, CYCLIC EXPOSED AT -10 TO +65 °C, 90~98 % (AT HIGH HUMIDITY) TOTAL 10 CYCLES (240 h) EXPOSED AT -10 TO +65 °C, 90~98 % (AT HIGH HUMIDITY) INSULATION RESISTANCE: 100 MΩ MIN. (AT DRY) INSULATION RESISTANCE: 500 MΩ MIN. (AT DRY) INSULATION RESISTANCE: 100 MΩ MIN. (AT DRY) INSULATION RESISTANCE: 500 MΩ MIN. (AT DRY) INSULATION RESISTANCE: 100 MΩ MΩ MΩ MIN. (AT DRY) INSULATION RESISTANCE: 100 MΩ										"		VANAL AND DIV	CENIONO	_ 0,	_	_
DAMP HEAT, CYCLIC EXPOSED AT -10 TO $+65$ °C, $90\sim98$ % ① INSULATION RESISTANCE: 100 M Ω MIN. (AT HIGH HUMIDITY) ② INSULATION RESISTANCE: 500 M Ω MIN. (AT DRY) ③ NO DAMAGE, CRACK AND LOOSENESS OF PARTS. RAPID CHANGE OF TIME $30 \rightarrow 3 \rightarrow 30 \rightarrow 3$ min. PARTS.	AGAINST CA	BLE PULL)	OLIA DA OTEDIOTICO							2) NO BREAKAC	SE OF CLAMP.				
TOTAL 10 CYCLES (240 h) (AT HIGH HUMIDITY) (INSULATION RESISTANCE: 500 M Ω MIN. (AT DRY) (INSULATION RESISTANCE: 500 M Ω	ENVIRO	NMENTAL	CHARA	CTE	RIS	TICS	ı									
(2) INSULATION RESISTANCE: 500 M Ω MIN. (AT DRY) (3) NO DAMAGE, CRACK AND LOOSENESS OF PARTS. RAPID CHANGE OF TEMPERATURE $-65 \rightarrow$	AMP HEAT,								Œ							
(AT DRY) (AT DRY) (B) (AT DRY) (C) (C) (C) (C) (C) (C) (C) (9	•		500	MO MIN	.]		
RAPID CHANGE OF TIME $30 \rightarrow 3 \rightarrow 30 \rightarrow 3$ min. OF PARTS. NO DAMAGE, CRACK AND LOOSENESS OF PARTS.									6	=	RESISTANCE.	500	IAIZS IAIIIA		-	
RAPID CHANGE OF TIME $30 \rightarrow 3 \rightarrow 30 \rightarrow 3$ min. TEMPERATURE $-65 \rightarrow$										3	NO DAMAGE	CRACK AND L	OOSEN	ESS		
RAPID CHANGE OF TIME 30 → 3 → 30 → 3 min. PARTS.			TEMPERATURE SE							┿.		DACK AND LOC	CENEC	e oe		-
ITEMPERATURE 10 10 1	APID CHAN	GE OF	l								•					
	EMPERATU	RE		5 CYC		 3	→ 30 -	- J	131)[1.	. .					10	-
CORROSION SALT MIST EXPOSED IN 5 % SALT WATER SPRAY FOR 48 h. NO HEAVY CORROSION.	ORROSION	EXPOSED IN 5 % SALT WATER SPRAY FOR 48 h.							١,	NO HEAVY CORROSION.					1-	
			1					Ţ								.l
REMARKS PORTI Vector Network Analyzer PORT2	REMARKS	PO	R71	Vector 1	letwork A	nolyzer	P0RT2									
V(m) V(t) V(t) D. U. T V(m) V(t) V(m)		,	V(m) V(f) / V	/(f) D). U. T	V(m)/	(V(f) V(m)		DAVAGA		DEGICNED	CHECKED			DELEA	CED
NOTE 1 D.U.; Detail View HV-BPR01 Inc Lonnector for measurement 1 A/	MEASURIING METHOD		cified, refer to MIL-STD-202.							'	N. Z					IOLD
INICASORATIVO METITOD										,						
/ Jam J. Man Mary										`						
g i grand the state of the stat		4								4 103.4.19 103.4.19 103.04.15						
	lote QT:Q	ualification Tes	st AT:Ass	игапс	e Test	O:A	pplicable Te	st				NO				
Note QT:Qualification Test AT:Assurance Test O:Applicable Test											IPART	NU.				
Note QT:Qualification Test AT:Assurance Test O:Applicable Test SPECIFICATION SHEET PART NO.	HC).	IIROSE EL E	בדפור רי) IT	D.	٦SP	ECIFICA	ATIC	SINC	SH	EET			204		
Note QT:Qualification Test AT:Assurance Test O:Applicable Test						SP	ECIFICA	ATIC			EET		-BPI	२० 1		1 /

